98 research outputs found

    Multiple homography estimation with full consistency constraints

    Get PDF
    A novel approach is presented to estimating a set of interdependent homography matrices linked together by latent variables. The approach allows enforcement of all underlying consistency constraints while accounting for the arbitrariness of the scale of each individual matrix. The input data is assumed to be in the form of a set of homography matrices obtained by estimation from image data with the consistency constraints ignored, appended by a set of error covariances associated with these matrix estimates. A cost function is proposed for upgrading, via optimisation, the input data to a set of homography matrices satisfying the constraints. The function is invariant to a change of any of the individual scales of the input matrices. The proposed approach is applied to the particular problem of estimating a set of homography matrices induced by multiple planes in the 3D scene between two views. Experimental results are given which demonstrate the effectiveness of the approach.Wojciech Chojnacki, Zygmunt L. Szpak, Michael J. Brooks and Anton van den Hengelhttp://dicta2010.conference.nicta.com.au

    Enforcing consistency constraints in uncalibrated multiple homography estimation using latent variables

    Get PDF
    An approach is presented for estimating a set of interdependent homography matrices linked together by latent variables. The approach allows enforcement of all underlying consistency constraints while accounting for the arbitrariness of the scale of each individual matrix. The input data is assumed to be in the form of a set of homography matrices individually estimated from image data with no regard to the consistency constraints, appended by a set of error covariances, each characterising the uncertainty of a corresponding homography matrix. A statistically motivated cost function is introduced for upgrading, via optimisation, the input data to a set of homography matrices satisfying the constraints. The function is invariant to a change of any of the individual scales of the input matrices. The proposed approach is applied to the particular problem of estimating a set of homography matrices induced by multiple planes in the 3D scene between two views. An optimisation algorithm for this problem is developed that operates on natural underlying latent variables, with the use of those variables ensuring that all consistency constraints are satisfied. Experimental results indicate that the algorithm outperforms previous schemes proposed for the same task and is fully comparable in accuracy with the ‘gold standard’ bundle adjustment technique, rendering the whole approach both of practical and theoretical interest. With a view to practical application, it is shown that the proposed algorithm can be incorporated into the familiar random sampling and consensus technique, so that the resulting modified scheme is capable of robust fitting of fully consistent homographies to data with outliers.Wojciech Chojnacki, Zygmunt L. Szpak, Michael J. Brooks, Anton van den Henge

    Relativistic quantum mechanics with trapped ions

    Get PDF
    We consider the quantum simulation of relativistic quantum mechanics, as described by the Dirac equation and classical potentials, in trapped-ion systems. We concentrate on three problems of growing complexity. First, we study the bidimensional relativistic scattering of single Dirac particles by a linear potential. Furthermore, we explore the case of a Dirac particle in a magnetic field and its topological properties. Finally, we analyze the problem of two Dirac particles that are coupled by a controllable and confining potential. The latter interaction may be useful to study important phenomena as the confinement and asymptotic freedom of quarks.Comment: 17 pages, 4 figure

    Doubly magic Pb 208: High-spin states, isomers, and E3 collectivity in the yrast decay

    Get PDF
    Yrast and near-yrast levels up to spin values in excess of I=30 have been delineated in the doubly magic Pb208 nucleus following deep-inelastic reactions involving Pb208 targets and, mostly, 430-MeV Ca48 and 1440-MeV Pb208 beams. The level scheme was established up to an excitation energy of 16.4 MeV, based on multifold γ-ray coincidence relationships measured with the Gammasphere array. Below the well-known, 0.5-μs 10+ isomer, ten new transitions were added to earlier work. The delineation of the higher parts of the level sequence benefited from analyses involving a number of prompt- and delayed-coincidence conditions. Three new isomeric states were established along the yrast line with Iπ=20- (10 342 keV), 23+ (11 361 keV), and 28- (13 675 keV), and respective half-lives of 22(3), 12.7(2), and 60(6) ns. Gamma transitions were also identified preceding in time the 28- isomer; however, only a few could be placed in the level scheme and no firm spin-parity quantum numbers could be proposed. In contrast, for most states below this 28- isomer, firm spin-parity values were assigned, based on total electron-conversion coefficients, deduced for low-energy (<500keV) transitions from γ-intensity balances, and on measured γ-ray angular distributions. The latter also enabled the quantitative determination of mixing ratios. The transition probabilities extracted for all isomeric transitions in Pb208 have been reviewed and discussed in terms of the intrinsic structure of the initial and final levels involved. Particular emphasis was placed on the many observed E3 transitions as they often exhibit significant enhancements in strength [of the order of tens of Weisskopf units (W.u.)] comparable to the one seen for the neutron j15/2→g9/2 E3 transition in Pb209. In this context, the enhancement of the 725-keV E3 transition (56 W.u.) associated with the decay of the highest-lying 28- isomer observed in this work remains particularly challenging to explain. Large-scale shell-model calculations were performed with two approaches, a first one where the 1, 2, and 3 particle-hole excitations do not mix with one another, and another more complex one, in which such mixing takes place. The calculated levels were compared with the data and a general agreement is observed for most of the Pb208 level scheme. At the highest spins and energies, however, the correspondence between theory and experiment is less satisfactory and the experimental yrast line appears to be more regular than the calculated one. This regularity is notable when the level energies are plotted versus the I(I+1) product and the observed, nearly linear, behavior was considered within a simple "rotational" interpretation. Within this approximate picture, the extracted moment of inertia suggests that only the 76 valence nucleons participate in the "rotation" and that the Sn132 spherical core remains inert

    Tauopathic Changes in the Striatum of A53T α-Synuclein Mutant Mouse Model of Parkinson's Disease

    Get PDF
    Tauopathic pathways lead to degenerative changes in Alzheimer's disease and there is evidence that they are also involved in the neurodegenerative pathology of Parkinson's disease [PD]. We have examined tauopathic changes in striatum of the α-synuclein (α-Syn) A53T mutant mouse. Elevated levels of α-Syn were observed in striatum of the adult A53T α-Syn mice. This was accompanied by increases in hyperphosphorylated Tau [p-Tau], phosphorylated at Ser202, Ser262 and Ser396/404, which are the same toxic sites also seen in Alzheimer's disease. There was an increase in active p-GSK-3β, hyperphosphorylated at Tyr216, a major and primary kinase known to phosphorylate Tau at multiple sites. The sites of hyperphosphorylation of Tau in the A53T mutant mice were similar to those seen in post-mortem striata from PD patients, attesting to their pathophysiological relevance. Increases in p-Tau were not due to alterations on protein phosphatases in either A53T mice or in human PD, suggesting lack of involvement of these proteins in tauopathy. Extraction of striata with Triton X-100 showed large increases in oligomeric forms of α-Syn suggesting that α-Syn had formed aggregates the mutant mice. In addition, increased levels of p-GSK-3β and pSer396/404 were also found associated with aggregated α-Syn. Differential solubilization to measure protein binding to cytoskeletal proteins demonstrated that p-Tau in the A53T mutant mouse were unbound to cytoskeletal proteins, consistent with dissociation of p-Tau from the microtubules upon hyperphosphorylation. Interestingly, α-Syn remained tightly bound to the cytoskeleton, while p-GSK-3β was seen in the cytoskeleton-free fractions. Immunohistochemical studies showed that α-Syn, pSer396/404 Tau and p-GSK-3β co-localized with one another and was aggregated and accumulated into large inclusion bodies, leading to cell death of Substantia nigral neurons. Together, these data demonstrate an elevated state of tauopathy in striata of the A53T α-Syn mutant mice, suggesting that tauopathy is a common feature of synucleinopathies

    Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers.

    Get PDF
    Genetic studies of type 1 diabetes (T1D) have identified 50 susceptibility regions, finding major pathways contributing to risk, with some loci shared across immune disorders. To make genetic comparisons across autoimmune disorders as informative as possible, a dense genotyping array, the Immunochip, was developed, from which we identified four new T1D-associated regions (P < 5 × 10(-8)). A comparative analysis with 15 immune diseases showed that T1D is more similar genetically to other autoantibody-positive diseases, significantly most similar to juvenile idiopathic arthritis and significantly least similar to ulcerative colitis, and provided support for three additional new T1D risk loci. Using a Bayesian approach, we defined credible sets for the T1D-associated SNPs. The associated SNPs localized to enhancer sequences active in thymus, T and B cells, and CD34(+) stem cells. Enhancer-promoter interactions can now be analyzed in these cell types to identify which particular genes and regulatory sequences are causal.This research uses resources provided by the Type 1 Diabetes Genetics Consortium, a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute of Allergy and Infectious Diseases (NIAID), the National Human Genome Research Institute (NHGRI), the National Institute of Child Health and Human Development (NICHD) and JDRF and supported by grant U01 DK062418 from the US National Institutes of Health. Further support was provided by grants from the NIDDK (DK046635 and DK085678) to P.C. and by a joint JDRF and Wellcome Trust grant (WT061858/09115) to the Diabetes and Inflammation Laboratory at Cambridge University, which also received support from the NIHR Cambridge Biomedical Research Centre. ImmunoBase receives support from Eli Lilly and Company. C.W. and H.G. are funded by the Wellcome Trust (089989). The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (100140). We gratefully acknowledge the following groups and individuals who provided biological samples or data for this study. We obtained DNA samples from the British 1958 Birth Cohort collection, funded by the UK Medical Research Council and the Wellcome Trust. We acknowledge use of DNA samples from the NIHR Cambridge BioResource. We thank volunteers for their support and participation in the Cambridge BioResource and members of the Cambridge BioResource Scientific Advisory Board (SAB) and Management Committee for their support of our study. We acknowledge the NIHR Cambridge Biomedical Research Centre for funding. Access to Cambridge BioResource volunteers and to their data and samples are governed by the Cambridge BioResource SAB. Documents describing access arrangements and contact details are available at http://www.cambridgebioresource.org.uk/. We thank the Avon Longitudinal Study of Parents and Children laboratory in Bristol, UK, and the British 1958 Birth Cohort team, including S. Ring, R. Jones, M. Pembrey, W. McArdle, D. Strachan and P. Burton, for preparing and providing the control DNA samples. This study makes use of data generated by the Wellcome Trust Case Control Consortium, funded by Wellcome Trust award 076113; a full list of the investigators who contributed to the generation of the data is available from http://www.wtccc.org.uk/.This is the author accepted manuscript. The final version is available via NPG at http://www.nature.com/ng/journal/v47/n4/full/ng.3245.html

    Octupole transitions in the 208Pb region

    Get PDF
    The 208Pb region is characterised by the existence of collective octupole states. Here we populated such states in 208Pb + 208Pb deep-inelastic reactions. γ-ray angular distribution measurements were used to infer the octupole character of several E3 transitions. The octupole character of the 2318 keV 17- 14+ in 208Pb, 2485 keV 19/2- 13/2+ in 207Pb, 2419 keV 15/2- 9/2+ in 209Pb and 2465 keV 17/2+ 11/2- in 207Tl transitions was demonstrated for the first time. In addition, shell model calculations were performed using two different sets of two-body matrix elements. Their predictions were compared with emphasis on collective octupole states

    Stable Isotope Biogeochemistry of Seabird Guano Fertilization: Results from Growth Chamber Studies with Maize (Zea Mays)

    Get PDF
    Stable isotope analysis is being utilized with increasing regularity to examine a wide range of issues (diet, habitat use, migration) in ecology, geology, archaeology, and related disciplines. A crucial component to these studies is a thorough understanding of the range and causes of baseline isotopic variation, which is relatively poorly understood for nitrogen (δ(15)N). Animal excrement is known to impact plant δ(15)N values, but the effects of seabird guano have not been systematically studied from an agricultural or horticultural standpoint.This paper presents isotopic (δ(13)C and δ(15)N) and vital data for maize (Zea mays) fertilized with Peruvian seabird guano under controlled conditions. The level of (15)N enrichment in fertilized plants is very large, with δ(15)N values ranging between 25.5 and 44.7‰ depending on the tissue and amount of fertilizer applied; comparatively, control plant δ(15)N values ranged between -0.3 and 5.7‰. Intraplant and temporal variability in δ(15)N values were large, particularly for the guano-fertilized plants, which can be attributed to changes in the availability of guano-derived N over time, and the reliance of stored vs. absorbed N. Plant δ(13)C values were not significantly impacted by guano fertilization. High concentrations of seabird guano inhibited maize germination and maize growth. Moreover, high levels of seabird guano greatly impacted the N metabolism of the plants, resulting in significantly higher tissue N content, particularly in the stalk.The results presented in this study demonstrate the very large impact of seabird guano on maize δ(15)N values. The use of seabird guano as a fertilizer can thus be traced using stable isotope analysis in food chemistry applications (certification of organic inputs). Furthermore, the fertilization of maize with seabird guano creates an isotopic signature very similar to a high-trophic level marine resource, which must be considered when interpreting isotopic data from archaeological material

    Core excitations across the neutron shell gap in 207Tl

    Get PDF
    The single closed-neutron-shell, one proton-hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations using two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states
    • …
    corecore